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Abstract. A density functional theory of freezing combined with a thermodynamically
consistent integral equation method is used to investigate the phase behaviour of systems
interacting via them–n potential withm = 2n, φ(r) = 4ε[(σ/r)2n − (σ/r)n] (n = 6, 8,
10 and 12) and rigid C60 molecules interacting via the Girifalco potential. It is found that the
liquid–vapour coexistence region is gradually suppressed as the attractive part of the potential
becomes short range with increasingn and the coexistence ceases to occur atn ≈ 11. Them–n
potential withn = 11–12 is similar to the Girifalco potential and the two yield similar phase
diagrams. It is also found that the phase diagram of C60 calculated for a truncated potential is
qualitatively in agreement with the corresponding Monte Carlo (MC) simulations of Hagenet al,
which have predicted nonexistence of the liquid phase in contrast to the molecular dynamics
(MD) simulations of Chenget al. These results suggest the importance of treating the long-range
tail of the potential correctly and provide a partial explanation for the discrepancy between the
MC and MD simulations.

1. Introduction

For ordinary atomic or molecular systems interacting via potentials with sufficiently strong
attractive forces, liquid–vapour coexistence occurs and the liquid exists as a stable phase.
However, if the range or intensity of the attractive part of the intermolecular potential
becomes sufficiently small, the sublimation line passes above the liquid–vapour critical
point and the liquid phase no longer exists. This observation has been made in the
theoretical investigation for the colloidal suspension [1]. Recently, the phase behaviour of
simple systems with short-range or weak attractive intermolecular forces has also attracted
increasing attention. One such example that has emerged in recent years is the phase
behaviour of C60 molecules [2], and several simulation and theoretical studies have been
performed to determine their phase diagram using the intermolecular potential proposed by
Girifalco [3]. Hagenet al have performed Monte Carlo (MC) simulations and concluded
that C60 has no liquid phase [4], whereas the molecular dynamics (MD) simulations of
Chenget al have predicted that the liquid phase exists in a narrow range of temperatures
[5]. Mederos and Navascués have discussed these contradictory results using their density
functional theory (DFT) of freezing but concluded that the theory cannot definitively settle
this point [6]. On the other hand, Caccamo has used the modified hypernetted-chain
(MHNC) theory together with the empirical one-phase criterion for the freezing and obtained
a result which is in agreement with the MD simulations [7]. We have also performed similar
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calculations using our DFT of freezing in place of the empirical criterion [8]. Our result is
in qualitative agreement with the MD simulations and Caccomo’s results but the predicted
range of the liquid phase is much narrower (< 20 K). These results suggest that C60 is a
critical substance which might have a liquid phase or not, but its phase behaviour is still
not very conclusive.

The effect of short-rangedness or weakness of the attractive intermolecular forces on
the phase behaviour has also been investigated for some model systems by simulations
[9–12], the DFT of freezing, and other theories such as the van der Waals theory [13–17].
These studies have shown that the liquid–vapour coexistence ceases to occur if the attractive
force is reduced to a critical strength depending on the nature of individual potential. The
effect of the short-rangedness of the intermolecular potential on the isostructural solid-
to-solid transition has also been the issue of considerable interest and several theoretical
investigations have been made [18–23].

In this paper we present a DFT for the phase behaviour of systems with varying range
of attractive forces. We first consider systems interacting via them–n potentials. This part
of the present work may constitute a theoretical complement of the MC simulation studies
of Hafskjold [11], who has considered systems interacting via them–n–spline potential,
which is a ‘truncated’ version of them–n potential. C60 is also revisited and the effect
on the phase diagram of truncating the long-range tail of the potential is examined. In
simulation studies such a truncation has often been made for practical reasons but could
lead to a quite different result as actually confirmed for the Lennard-Jones (LJ) fluid [9].
In this work we use a generalized version of the modified weighted-density approximation
(MWDA) combined with a thermodynamically consistent integral equation method. The
generalized MWDA (GMWDA) is a generalization of the MWDA of Denton and Ashcroft
[24], and has been successfully applied to inverse-power systems [25]. The preliminary
report of the present study on C60 is found elsewhere [8].

In the next section we summarize the GMWDA. In section 3 the prescriptions are
given for applications tom–n potential systems and C60, and the results of calculations are
presented. The final section is devoted to the summary and conclusions.

2. Summary of the GMWDA

We consider a non-Coulombic system interacting through a pair potential,φ(r), which
decays more rapidly thanr−3 as r → ∞. Following the thermodynamic perturbation
theory developed for uniform liquids [26], we start by splittingφ(r) into two parts,
φ(r) = φ0(r) + 1φ(r), whereφ0(r) is a repulsive, short-range part and1φ(r) is the
remaining long-range part. The (Helmholtz) free energy of the system as a functional of
the (number) densityρ(r) is then written, in accordance with the above potential splitting,
as

F [ρ] = Fid [ρ] + F0,ex [ρ] + F1[ρ] (1)

whereFid [ρ] is the ideal-gas contribution,F0,ex [ρ] the excess free energy of thereference
system interacting throughφ0(r), andF1[ρ] the contribution due to1φ(r). The functional
form of Fid [ρ] is given by

Fid [ρ] = β−1
∫

dr ρ(r){ln[ρ(r)33] − 1} (2)
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whereβ is the inverse temperature,β = 1/kBT , and3 is the thermal de Broglie wavelength.
The contributionF1[ρ] is formally written as [26]

F1[ρ] = 1

2

∫
dr1

∫
dr2

∫ 1

0
dλ ρ(2)λ (r1, r2)1φ(r12) (3)

where ρ(2)λ is the pair distribution function of a system interacting throughφλ(r) =
φ0(r)+ λ1φ(r) andr12 = |r1− r2|.

For an appropriate potential separation the reference free energyF0,ex [ρ] is mostly
entropic and the contributionF1[ρ] accounts for most of the cohesive energy. Curtin and
Ashcroft noted the importance of treating these contributions by separate approximations
[27]. Since then various versions based on the above approach have been developed and
the major differences between them consist in the choice of the reference system and in
the treatment ofF1[ρ] [25, 27–30]. The hard-sphere (HS) system has most often been
employed as the reference system and treated by nonperturbative DFT such as the weighted-
density approximation (WDA) [31], the modified WDA (MWDA) [24], and the generalized
effective-liquid approximation (GELA) [32]. On the other hand, the contributionF1[ρ]
has been calculated by introducing approximations toρ

(2)
λ in (3) [28–30], or by using the

second-order perturbation theory [27],

F1[ρ] ≈ F1(ρ̄)− 1

2β

∫
dr1

∫
dr21C

(2)(r12; ρ̄)1ρ(r1)1ρ(r2). (4)

In equation (4)1C(2) = C(2) − C(2)0 , whereC(2) and C(2)0 are the two-particle direct
correlation functions (DCFs) of the full and reference systems, respectively, and1ρ(r) =
ρ(r)− ρ̄, ρ̄ being the average density of the solid under consideration.

The GMWDA is quite similar to the theory of Curtin and Ashcroft [27], and it is based
on the separate global thermodynamic mappings forF0,ex [ρ] andF1[ρ] [25]:

F0,ex [ρ] ≈ Nf0,ex(ρ̂0) (5a)

and

F1[ρ] ≈ Nf1(ρ̂1) (5b)

where N is the number of particles in the system,f0,ex(ρ) the excess free energy
per particle of a uniform reference fluid andf1(ρ) the contribution due to1φ(r), i.e.
f1(ρ) = fex(ρ) − f0,ex(ρ), fex(ρ) being the total excess free energy per particle of the
system. We assume that the effective-liquid densities,ρ̂0 and ρ̂1, are independent of each
other and given by

ρ̂0 = 1

N

∫
dr1

∫
dr2 ρ(r1)ρ(r2)w0(r12; ρ̂0) (6a)

and

ρ̂1 = 1

N

∫
dr1

∫
dr2 ρ(r1)ρ(r2)w1(r12; ρ̂1) (6b)

as in the original MWDA [24]. The weight functionsw0 andw1, as yet unspecified, are
determined by two requirements. The first one is that bothw0 andw1 are normalized, which
must be satisfied in the limit of a uniform density to ensure that the approximation scheme
becomes exact in this limit. The second requirement is that the approximateF0,ex [ρ] and
F1[ρ] in (5a) and (5b) exactly reproduce the corresponding two-body DCFs, i.e.C

(2)
0 (r; ρ)

and1C(2)(r; ρ), respectively, in the limit of uniform density. Unique specifications of the
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weight functions follow from these requirements and the substitution of these results into
(6a) and (6b) leads to the implicit equations for̂ρ0 and ρ̂1 [25],

(ρ̂0− ρ̄)βf ′0,ex(ρ̂0) = − 1

2N

∫
dr1

∫
dr21ρ(r1)1ρ(r2)C

(2)
0 (r12; ρ̂0) (7a)

and

(ρ̂1− ρ̄)βf ′1(ρ̂1) = − 1

2N

∫
dr1

∫
dr21ρ(r1)1ρ(r2)1C

(2)(r12; ρ̂1) (7b)

wheref ′0,ex(ρ) = ∂f0,ex(ρ)/∂ρ andf ′1(ρ) = ∂f1(ρ)/∂ρ. We note that botĥρ0 and ρ̂1 are
functionals ofρ(r) and determined by solving (7a) and (7b), respectively, for a givenρ(r).
The approximate excess free energy per particle is then given by

βfex [ρ] = βf0,ex(ρ̂0)+ βf1(ρ̂1). (8)

We also note that we must follow Laird and Kroll [33] to derive the GMWDA for the
Coulombic systems such as the classical one-component plasma (OCP) [25].

In the GMWDA we have used the MWDA separately to calculate bothF0,ex [ρ] and
F1[ρ], but other theories also could have been used. In fact, the WDA and the GELA
are useful candidates for calculatingF0,ex [ρ] (the GELA works only for the HS reference
system). However, we gain little by the use of these theories, while the implementation of
these theories is much more demanding than that of the MWDA.

3. Applications to the m–n potential systems and C60

3.1. Prescriptions

Following Hafskjold [11], we considered systems interacting throughm–n potentials with
m = 2n, i.e.

φ(r) = 4ε[(σ/r)2n − (σ/r)n]. (9)

The LJ potential corresponds to the case ofn = 6. Them–n–spline potential used by
Hafskjold in the MC simulations is a ‘truncated’ version of (9), i.e. it is given by (9) for
r < rs , wherers is the inflection point ofφ(r), but modified asφ(r) = c(r−rc)2+d(r−rc)3
for rs < r < rc andφ(r) = 0 for r > rc. Here the parametersc, d and rc are determined
by the requirement that the modified potential and its first- and second-order derivatives
are continuous atr = rs [11, 34]. As the first step in our theoretical investigations we
considered only them–n potentials given by (9). Another system we considered is C60

molecules interacting via the potential proposed by Girifalco [3], which is given by

φ(r) = −A[1/s(s − 1)3+ 1/s(s + 1)3− 2/s4] + B[1/s(s − 1)9+ 1/s(s + 1)9− 2/s10]
(10)

where s = r/2a and 2a = 0.71 nm. This potential has been obtained by assuming that
the carbon atoms on different C60 molecules interact through an LJ potential and that the
carbon atoms on each C60 molecule are uniformly distributed on the spherical surface with
diameter 2a. This spherical approximation may be justified at high temperatures, where
C60 molecules are almost freely rotating. The parametersA andB in (10) were determined
empirically and are given in [3]. This potential is compared with them–n potentials with
n = 6, 8, 10 and 12 in figure 1. For the Girifalco potentialσ/2a = 1.351 113 and
r0/2a = 1.141 634, whereσ andr0 are the distances at whichφ(r) crosses zero and takes
the principal minimum, respectively. We find that them–n potential withn = 11–12 is
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Figure 1. Comparisons of them–n potentials and the Girifalco potential for C60, for which
σ/2a = 1.351 113 and the well depth is 3218 K.

very similar to the Girifalco potential if they are scaled by the well depth and plotted as the
functions of the scaled distance,r/σ .

In the MC simulations for C60 [4], the potential given by (10) was truncated at
r = 2σ (s = 2.70), where the magnitude ofφ(r) is very small and only 0.76% of the well
depth. We also used a ‘truncated’ potential which is smooth for convenience in solving the
integral equation (see below) but mimics the one used in the MC simulations:

φtrunc(r) =
{
φ(r) r < r1

φ(r1) e−λ(r−r1) r > r1
(11)

where φ(r) is given by (10) andλ = −φ′(r1)/φ(r1), which ensures the continuity of
φ′trunc(r) at r = r1. We used the values1 = r1/2a = 2.0, which was determined by
requiring that the potential (11) and the one used in the MC simulations [4] yield the same
Fourier transform in the long-wavelength limit, i.e. approximately the same internal energy
and virial pressure.

In the applications of the GMWDA to the systems characterized by equations (9)–(11)
we employed the potential separation proposed by Weeks, Chandler and Andersen (WCA)
[35], which is defined by

φ0(r) =
{
φ(r)− φ(r0) r < r0

0 r > r0
(12)

wherer0 is, as before, the separation at whichφ(r) takes the principal minimum. As noted
above the HS system has been the most popular reference system in the thermodynamic
perturbation approach. However, we did not use the HS system as the reference system
in the present work because of the unfavourable features found in our previous work [36].
We first note that, if we use accurate input data in place of the approximate Percus–Yevick
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(PY) ones in the MWDA and GELA equations for the HS system, the predicted freezing
parameters slightly worsen. Furthermore, such a unfavourable feature becomes much more
serious when the HS system is used as the reference system. In fact, as demonstrated for
the OCP, reasonable freezing properties cannot be predicted unless we use the approximate
PY DCF and the corresponding free energy rather than more accurate ones in the MWDA
and GELA used to treat the reference HS system [36].

The modified hypernetted-chain (MHNC) theory [37] was used to calculate the equation
of state and DCFs of the systems interacting throughφ(r) and φ0(r), which are the
necessary input to solve equations (7a) and (7b) and to determine the liquid–vapour phase
boundary. Among the several versions in the context of the MHNC theory we used the
thermodynamically consistent one. More explicitly, we used the accurate HS bridge function
derived from the Verlet–Weis parametrization of the HS radial distribution function [38, 39],
and determined the HS parameter such that the virial pressure and compressibility equations
are consistent with each other. The details of the method for solving the MHNC equations
are given elsewhere [7, 8].

In the calculations of the free energy of the solid phase in the GMWDA we followed
the common practice and used a variational method, in which the density distribution in the
solid was parametrized as

ρ(r) =
(α
π

)3/2∑
R

exp[−α(r −R)2] (13)

where {R} is the Bravais lattice vectors. We solved equations (7a) and (7b) for varying
values ofα and minimized the resulting free energy of the solid,

βf (ρ̄;α) = βfid(ρ̄;α)+ βfex(ρ̄;α) (14)

with respect toα, whereβfex(ρ̄;α) is obtained from (8). The method of calculating the
ideal-gas contributionβfid(ρ̄;α) has been given elsewhere [32]. In the actual calculations
it is convenient to calculate the solid free energy relative to the liquid with the same density,
i.e.

β1f (ρ̄) = βfsolid (ρ̄)− βfliq(ρ̄) (15)

whereβfsolid (ρ̄) = βf (ρ̄;α) andβfliq(ρ̄) = βf (ρ̄;α = 0).

3.2. Results

The liquid–vapour and the solid–liquid phase boundaries were determined by enforcing
equality of pressures and chemical potentials in the two coexisting phases at a fixed
temperature. Figure 2 illustrates the phase diagram of the LJ system obtained by the present
theory and its comparisons with the MC simulations [40, 41]. The face-centred-cubic (fcc)
structure is assumed for the solid phase in these studies. Hereafter we use the reduced
temperature and density defined byT ∗ = kBT /ε andρ∗ = ρσ 3, respectively, for them–n
potential systems. We find that the present result for the liquid–vapour phase boundary is in
good agreement with the MC simulations [40], yielding the critical temperatureT ∗c ∼ 1.32.
This part of the phase diagram is determined solely by the fluid data and is essentially the
same as that of Caccamo [7]. The present and MC results for the melting line are also in
good agreement with each other. However, the present result for the freezing line falls at
somewhat lower densities and yields a higher triple point,T ∗t ∼ 0.80, than the MC result,
Tt∗ ∼ 0.70. This discrepancy for the freezing line may be ascribed to the defect of the
MWDA for the reference system as well as for the HS system (equation (7a)). In fact, the
freezing density of the HS system predicted by the MWDA is about 3–5% smaller than the
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Figure 2. The predicted phase diagram of the LJ system and its comparisons with the MC results
from [40] for the solid–liquid coexistence and from [41] for the liquid–vapour coexistence. The
fcc structure is assumed for the solid phase, andT ∗ andρ∗ are defined byT ∗ = kBT /ε and
ρ∗ = ρσ 3, respectively.

MC results, whereas the MWDA and MC have predicted much the same melting density
[24, 33, 36].

The predicted phase behaviours of them–n potential systems are summarized in figure 3.
The fcc structure is also assumed for the solid phase in all these calculations. We find that
the liquid–vapour coexistence region is suppressed as the potential becomes short range with
increasingn and the coexistence ceases to occur for largen. These results are qualitatively
similar to those found for other systems such as the one interacting through the hard-
core–attractive Yukawa potential [10, 13]. The critical value ofn separating existence and
nonexistence of a liquid phase is between 10 and 12, i.e.nc ∼ 11, in the present GMWDA.
However, as noted above the freezing line predicted by the GMWDA could fall at somewhat
lower densities than the true result, yielding a higher triple point. If this feature of the
GMWDA is taken into account, the true critical value could be larger, i.e.nc ∼ 12. We
note that for largen (> 8) the effect of truncatingφ(r) in (9) becomes less significant
and the present results for them–n potentials are similar to those for the corresponding
m–n–spline potentials obtained by the MC simulations [11], which have predicted a smaller
value,nc ∼ 10, reflecting the effect of truncation.

Figure 4 shows the phase diagrams of C60 predicted by the GMWDA using the full and
truncated potentials. The freezing line obtained for the full potential crosses the liquid–
vapour binodal line slightly below the estimated critical temperature,Tc = 1960 K, and
the liquid phase does exist albeit in a very narrow range of temperatures (< 20 K) [8]. If
we use a ‘truncated’ potential the liquid–vapour phase boundary is shifted downwards by
∼ 100 K and the sublimation line now passes about 50 K above the critical point. This
result is qualitatively in agreement with the MC simulations of Hagenet al [4], in which
the truncated potential was used. As noted above the Girifalco potential (10) is quite small
(∼ 0.76% of the well depth) at the truncation point,r = 2σ , but the effect of truncation
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Figure 3. Predicted phase diagrams of them–n potential systems. The fcc structure is also
assumed for the solid phase, andT ∗ and ρ∗ are the reduced quantities as in figure 2. Open
diamonds (♦) show the boundary of the (metastable) liquid–vapour coexistence region forn = 12
and the cross (×) is the estimated critical point, which lies below the sublimation line (�).

Figure 4. Phase diagrams of C60 predicted for the Girifalco potential (10) and for its ‘truncated’
version given by (11). Open circles and open squares represent the boundaries of the (metastable)
liquid–vapour coexisting region and crosses show the estimated critical points. The melting line
for the truncated potential is almost indistinguishable from that for the full potential.

on the equation of state is significant, amounting to a∼ 5% reduction in magnitude of the
free energy of the fluids, which leads to a∼ 5% (∼ 100 K) shift of the liquid–vapour phase
boundary as actually seen in figure 4. These results suggest the importance of treating the
long-range tail of the potential correctly even in the study of the phase diagram of C60.
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For the LJ system the effect of the potential truncation (atr = 2.5σ ) on the liquid–vapour
coexistence has been found to be much more significant [9]. We also note that the predicted
phase diagram of C60 is quite similar to that of them–n potential system withn ∼ 11, which
could have been anticipated from the similarity of the potentials as illustrated in figure 1.

4. Summary and conclusions

We have applied the GMWDA combined with a thermodynamically consistent integral
equation method to the calculations of the phase diagram ofm–n potential systems and
C60 molecules interacting via the Girifalco potential. We have confirmed that the liquid–
vapour coexistence region of them–n potential systems is suppressed as the attractive part
becomes short range with increasingn. The critical valuenc at which the liquid phase
ceases to exist is∼ 11. This value could be∼ 12 if we take into account the possible
defect of the GMWDA that the freezing line predicted by this theory falls at somewhat
lower densities, yielding a higher triple point, than the true results. These values ofnc are
compared with the MC result [11],nc ∼ 10, for them–n–spline potential system. For C60 we
have found that if one uses a ‘truncated’ potential the predicted liquid–vapour coexistence
region is suppressed by∼ 100 K and becomes metastable since the sublimation line now
passes about 50 K above the critical point. This result is qualitatively consistent with the
corresponding MC simulations of Hagenet al [4], and provides a partial explanation for
the discrepancy between the MC and MD simulations. The GMWDA predicts that C60

has a liquid phase in a very narrow range of temperatures (< 20 K) if the full Girifalco
potential is assumed. If again we take into account the possible defect of the GMWDA
mentioned above, the liquid phase of C60 could exist over a wider range of temperatures,
which supports the result of MD simulations of Chenget al [5].
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[21] Rasćon C, Navascúes G and Mederos L 1995J. Phys.: Condens. Matter7 8211
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